
SCR*: A Toolset for Specifying and

Analyzing Software Requirements
?

Constance Heitmeyer, James Kirby, Bruce Labaw and Ramesh Bharadwaj

Naval Research Laboratory, Code 5546, Washington, DC 20375, USA

Abstract. A controversial issue in the formal methods community is

the degree to which mathematical sophistication and theorem proving

skills should be needed to apply a formal method and its support tools.
This paper describes the SCR (Software Cost Reduction) tools, part

of a \practical" formal method|a method with a solid mathematical

foundation that software developers can apply without theorem proving
skills, knowledge of temporal and higher order logics, or consultation with

formal methods experts. The SCR method provides a tabular notation

for specifying requirements and a set of \light-weight" tools that detect
several classes of errors automatically. The method also provides support

for more \heavy-duty" tools, such as a model checker. To make model

checking feasible, users can automatically apply one or more abstraction
methods.

1 Introduction

Given the high frequency of requirements errors, the serious accidents they may

cause, and the high cost of correcting them, tools that aid software developers

in the early detection of requirements errors are crucial. To be e�ective, the

tools must be usable by software developers on industrial-strength projects and

should be based on a formal model of requirements. The formal model provides

a solid basis for formal analysis of the speci�cation, which detects many classes

of errors automatically.

For a requirements tool to be useful to software developers, the tool must

be part of a development method that provides guidance on those decisions

the requirements speci�cation should record and those it should not (i.e., the

method distinguishes requirements decisions from design decisions) and guidance

on making, evaluating, and recording the decisions. The development method

should also provide notations that software developers can apply easily in con-

structing a requirements speci�cation. Finally, the method should not require

the developers to be experts in the formal model underlying the tool.

The SCR (Software Cost Reduction) requirements method is a formalmethod

based on tables for specifying the requirements of safety-critical software sys-

tems. Designed for use by engineers, the method has been applied to a variety

of practical systems, including avionics systems, telephone networks, and nu-

clear power plants. Originally formulated by NRL researchers to document the

? This work was supported by the O�ce of Naval Research and SPAWAR.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
SCR*: A Toolset for Specifying and Analyzing Software Requirements

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5546,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

requirements of the Operational Flight Program (OFP) of the US Navy's A-7

aircraft [11, 1], SCR has been used in practice by a number of industrial orga-

nizations, such as Grumann, Bell Laboratories, Ontario Hydro, and Lockheed,

to specify software requirements. For example, in 1993-94, Lockheed used SCR

tables to specify the complete requirements of the C-130J OFP [5], a program

containing more than 230K lines of Ada code.

Introduced in 1995 [8, 9], SCR* is an integrated suite of tools supporting

the SCR requirements method. Figure 1 illustrates SCR*, which includes a spec-

i�cation editor for creating a requirements speci�cation, a dependency graph

browser for displaying the variable dependencies in the speci�cation, a consis-

tency checker for detecting well-formedness errors (e.g., type errors and miss-

ing cases), a simulator for validating the speci�cation, and a model checker for

checking application properties. Currently, more than 50 organizations in the US,

Canada, UK, and Germany, including industrial and government organizations

as well as universities, are experimenting with SCR*.

Fig. 1. SCR*: Tools supporting the SCR requirements method

To date, SCR* has been applied successfully in three external pilot projects.

In the �rst, researchers at NASA's IV&V Facility used SCR* to detect missing

cases and nondeterminism in the prose requirements speci�cation of software for

the International Space Station [4]. In the second project, engineers at Rockwell-

Collins used SCR* to expose 24 errors, many of them serious, in the requirements

speci�cation of an example ight guidance system [14]. Of the detected errors,

a third were uncovered in constructing the speci�cation, a third in running the

consistency checker, and the remaining third in executing the speci�cation with

the simulator. In a third project, researchers at the JPL (Jet Propulsion Labo-

ratory) used SCR* to analyze speci�cations of two components of NASA's Deep

Space-1 spacecraft for errors [13].

In a fourth pilot project, NRL applied the SCR tools, including a newly in-

tegrated model checker [3], to a sizable contractor-produced requirements spec-

i�cation of the Weapons Control Panel (WCP) for a safety-critical US military

system [10]. The tools uncovered numerous errors in the contractor speci�cation,

including a serious safety violation. Translating the contractor speci�cation into

the SCR tabular notation, using SCR* to detect speci�cation errors, and build-

ing a working prototype of the WCP required only one person-month, thus

demonstrating the utility and cost-e�ectiveness of the SCR method.

2 The SCR Requirements Model

An SCR requirements speci�cation describes the required system behavior as

the composition of a nondeterministic environment and a (usually) deterministic

system [7]. The system environment contains monitored and controlled quanti-

ties, quantities that the system monitors and controls. The environment nonde-

terministically produces a sequence of input events, where an input event is a

change in some monitored quantity. Beginning in some initial state, the system

responds to each input event in turn by changing state and possibly changing

one or more controlled quantities. In SCR, the system behavior is assumed to be

synchronous|the system completely processes one input event before processing

the next input event.

The SCR formal model, a special form of the classic state machine model,

represents a system � as a 4-tuple, � = (S; S0; E
m; T), where S is a set of states,

S0 � S is the initial state set,Em is the set of input events, and T is the transform

describing the allowed state transitions [7]. In the formal model presented in

[7], the transform T is deterministic, a composition of smaller functions called

table functions, derived from the tables in an SCR speci�cation. The formal

model requires the information in each table to satisfy certain properties. These

properties guarantee that each table describes a total function.

In SCR, two relations, NAT and REQ, describe the required system behavior.

NAT speci�es the natural constraints on the system behavior|constraints im-

posed by physical laws and the system environment. REQ speci�es the relation

that the system must enforce between the monitored and controlled quantities.

To specify REQ concisely, the SCR method uses mode classes, conditions, and

events. A mode class organizes the system states into equivalence classes, each

called a mode. The SCR model includes a set RF containing the names of all

variables (e.g., monitored and controlled variables, mode classes) in a given spec-

i�cation and a function mapping each variable in RF to a set of values. In the

model, a state is a function mapping each variable in RF to its value, a condition

is a predicate de�ned on a system state, and an event is a predicate de�ned on

two system states when any state variable changes.

3 The SCR Tools

Speci�cation Editor. To create, modify, or display a requirements speci�ca-

tion, the user invokes the speci�cation editor [8]. Each SCR speci�cation is orga-

nized into dictionaries and tables. The dictionaries de�ne the static information

in the speci�cation, such as the names and values of variables and constants, the

user-de�ned types, etc. The tables specify how the variables change in response

to input events. One important class of tables speci�es the behavior of controlled

variables.

Dependency Graph Browser. Understanding the relationship between dif-

ferent parts of a large speci�cation can be di�cult. To address this problem,

the Dependency Graph Browser (DGB) represents the dependencies among the

variables in a given SCR speci�cation as a directed graph [9]. By examining

this graph, a user can detect errors such as unde�ned variables and circular

de�nitions. The user can also use the DGB to display and extract subsets of

the dependency graph, e.g., the subgraph containing all variables upon which a

selected controlled variable depends.

Consistency Checker. The consistency checker [7, 9] analyzes a speci�cation

for properties derived from the SCR requirements model. It exposes syntax and

type errors, variable name discrepancies, missing cases, unwanted nondetermin-

ism, and circular de�nitions. When an error is detected, the consistency checker

provides detailed feedback to facilitate error correction. A form of static analy-

sis, consistency checking is performed without execution of the speci�cation or a

reachability analysis and is hence more e�cient than model checking. In devel-

oping an SCR speci�cation, the user normally invokes the consistency checker

�rst and postpones more heavy-duty analysis such as model checking until later.

By exploiting the special properties guaranteed by consistency checking (e.g.,

determinism), later analyses can be more e�cient [3].

Simulator. To validate a speci�cation, the user can run the simulator [9] and

analyze the results to ensure that the speci�cation captures the intended behav-

ior. Additionally, the user can de�ne invariant properties believed to be true of

the required behavior and, using simulation, execute a series of scenarios to de-

termine if any violate the invariants. To provide input to the simulator, the user

either enters a sequence of input events or loads a previously stored scenario.

The simulator supports the construction of front-ends, tailored to particular

application domains. One example is a customized front-end for pilots to use in

evaluating an attack aircraft speci�cation (see Figure 2). Rather than clicking

on monitored variable names, entering values for them, and seeing the results of

simulation presented as variable values, a pilot clicks on visual representations of

cockpit controls and sees results presented on a simulated cockpit display. This

front-end allows the pilot to move out of the world of requirements speci�cation

and into the world of attack aircraft, where he is the expert. Such an interface

facilitates customer validation of the speci�cation. A second customized front-

end, part of the WCP prototype mentioned above, has also been developed.

Model Checker. Recently, the explicit state model checker Spin [12] was in-

tegrated into SCR* [3]. After using SCR* to develop a formal requirements

speci�cation, a developer can obtain an automatic translation of the speci�ca-

tion into Promela, the language of Spin, and then invoke Spin within the toolset

to check properties of the speci�cation. Currently, the model checker analyzes

invariant properties. The user can use the simulator to demonstrate and validate

any property violation detected by Spin.

Fig. 2. Customized simulator front-end for an attack aircraft speci�cation

The number of reachable states in a state machine model of real-world soft-

ware is usually very large, sometimes in�nite. To make model checking practical,

we have developed sound methods for deriving abstractions from SCR speci�ca-

tions [3]. The methods are practical: none requires ingenuity on the user's part,

and each derives a smaller, more abstract model automatically. Based on the

property to be analyzed, these methods eliminate irrelevant variables as well

as unneeded detail from the speci�cation. For example, prior to invoking Spin

to check the WCP speci�cation for a safety property, we used our abstraction

methods to automatically reduce the number of variables from 258 to 55 and

to replace several real-valued variables with �nite-valued variables, thus making

model checking feasible [10].

4 Comparison with Other Tools

The method most closely related to SCR is the Requirements State Machine

Language (RSML) and associated tools [6]. In [2], Anderson et al. describe the

use of the model checker SMV to analyze a component of the TCAS-II spec-

i�cation expressed in RSML. Unlike our approach to limiting state explosion

which reduces the speci�cation by applying sound abstraction methods, Ander-

son et al. propose a more e�cient encoding for the BDD representation of the

RSML speci�cation. More recently, Park et al. [15] have used the Stanford Va-

lidity Checker (SVC) to check the consistency of RSML speci�cations. Their

approach is similar to that used by the consistency checker in SCR* [7, 9].

SCR* can be distinguished in three major ways from other tools. First, unlike

most commercial tools for requirements speci�cation, SCR* has a solid math-

ematical foundation, thus allowing sophisticated analyses, such as consistency

checking and model checking, largely unsupported by current tools. Second,

the SCR tools, unlike most research tools, have a well designed user interface,

are integrated to work together, and provide detailed feedback when errors are

detected to facilitate their correction. Finally, users of SCR* can do consider-

able analysis without interaction with application experts or formal methods

researchers, thereby providing formal methods usage at low cost.

References
1. T. A. Alspaugh et al. Software requirements for the A-7 aircraft. Report 9194,

Naval Research Lab, Wash. DC, 1992.

2. R. J. Anderson et al. \Model checking large software speci�cations." Proc. 4th

ACM SIGSOFT Symp. Foundations of Software Eng., October 1996.

3. R. Bharadwaj and C. Heitmeyer. \Model checking complete requirements speci�-

cations using abstraction." Journal of Automated Software Eng. (to appear).

4. S. Easterbrook and J. Callahan. \Formal methods for veri�cation and validation
of partial speci�cations: A case study." Journal of Systems and Software, 1997.

5. S. Faulk et al. \Experience applying the CoRE method to the Lockheed C-130J."

Proc. 9th Annual Computer Assurance Conf. (COMPASS '94), June 1994.

6. M. P. E. Heimdahl and N. Leveson. \Completeness and consistency analysis of
state-based requirements." Proc. 17th Int'l Conf. on Software Eng. (ICSE'95),

Seattle, WA, Apr. 1995.

7. C. Heitmeyer, R. Je�ords, and B. Labaw. \Automated consistency checking of
requirements speci�cations." ACM Trans. Software Eng. and Method. 5(3), 1996.

8. C. Heitmeyer et al. \SCR*: A toolset for specifying and analyzing requirements."

Proc. 10th Annual Conf. on Computer Assurance (COMPASS '95), June 1995.

9. C. Heitmeyer, J. Kirby, and B. Labaw. \Tools for formal speci�cation, veri�cation,
and validation of requirements." Proc. 12th Annual Conf. on Computer Assurance

(COMPASS '97), June 1997.

10. C. Heitmeyer, J. Kirby, and B. Labaw. \Applying the SCR requirements method

to a weapons control panel: An experience report." Proc. 2nd Workshop on Formal

Methods in Software Practice (FMSP'98), St. Petersburg, FL, March 1998.

11. K. L. Heninger. Specifying software requirements for complex systems: New tech-

niques and their application. IEEE Trans. on Software Eng. SE-6(1), Jan. 1980.
12. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,

1991.

13. R. R. Lutz and H.-Y. Shaw. \Applying the SCR* requirements toolset to DS-1
fault protection." Report D15198, Jet Propulsion Lab, Pasadena, CA, Dec. 1997.

14. S. Miller. \Specifying the mode logic of a ight guidance system in CoRE and

SCR." Proc. 2nd Workshop on Formal Methods in Software Practice (FMSP'98),

St. Petersburg, FL, March 1998.

15. D. Y. W. Park et al. \Checking properties of safety-critical speci�cations using

e�cient decision procedures." Proc. 2nd Workshop on Formal Methods in Software

Practice (FMSP'98), St. Petersburg, FL, March 1998.

This article was processed using the LTEX macro package with LLNCS style

